

Raddec-Triskem International Technical Workshop, 18th April 2024

Overview

New Resins

- TK-ELScint: TK-SrScint and TK-TcScint
- TK102
- TK221
- TK225

Under development

- Ra separation
- Extractive membranes gross alpha discs
- Cs resins
- « Industrial » resins

Other projects

TrisKem International

United Kingdom

Ireland
Éire

London

Nederland
Netherlands
België
Deutschland
Germany
Belgium
Paris

Ceská re
Czech Re
Czech Re
Willano
Hrvatska
Alaira

Marseille

Portugal
Lisboa
Spain

España
Spain

- Based in Rennes (France)
- Independent company since 02/07
 - Formerly part of Eichrom Europe
 - ISO 9001 since 2007
- Main products: extraction chromatographic resins
- Staff: 22
- R&D, QC and TechSupport group:
 - 5 RadChem PhD, 3 Technicians
- R&D: Development of new resins, techniques and applications
- Products used in several domains

Environment and Bioassay

Geochemistry and Metals Separation

TK-EIScint Resins

Technology developed by the University of Barcelona (García, Tarancón, Bagán, Gimenez)

« TK-ElScint » product line

TK-TcSCint for measurement of Tc-99 but also Cl-36, I-129... => last presentation today by Ines Llopart

The next resin commercially available coming TK-SrScint for Sr-90 => presentation during the LSC meeting and more to be presented by Alex Tarancon during this workshop

TK102 Resin

- Modified version of SR Resin
 - Same crown-ether
 - Solvent, inert support and ratios => different
 - Solvent is a fluorinated alcohol
- Distribution coefficient Kd ~50% higher (Pb, Sr, Ba)
- Higher capacity (Pb and Sr)
- SR resin separation procedure can be transposed on TK102
- Specific separating methods under development

TK102 Resin – Kd values

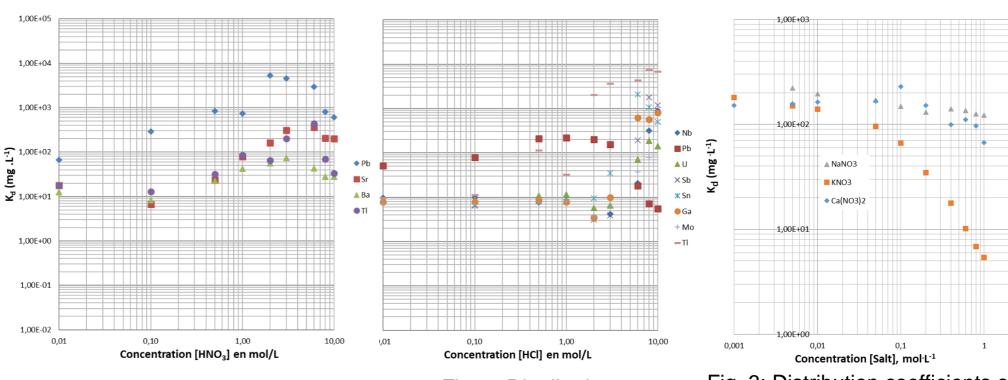
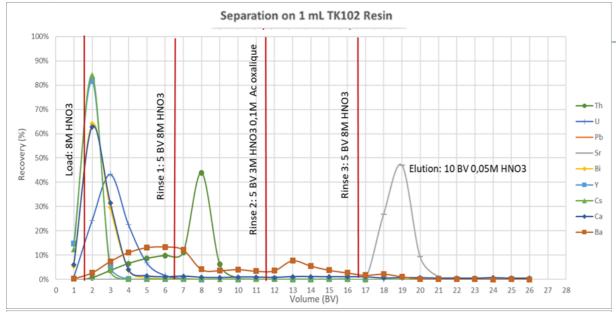
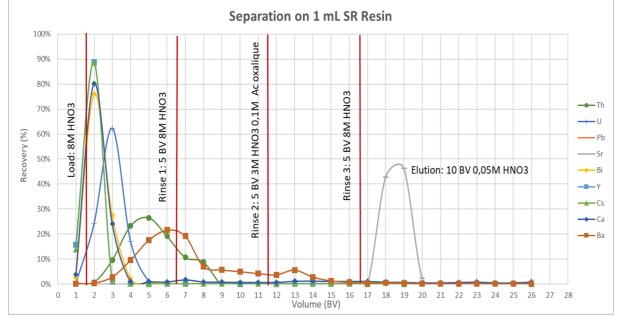


Fig. 1: Distribution coefficients of selected elements on TK102
Resin in HNO₃
► Sr, Ba, Pb and TI show high D_W in HNO₃

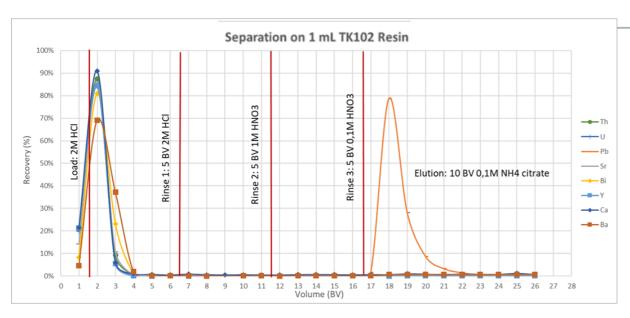
Fig. 2: Distribution coefficients of selected elements on TK102 Resin in HCI

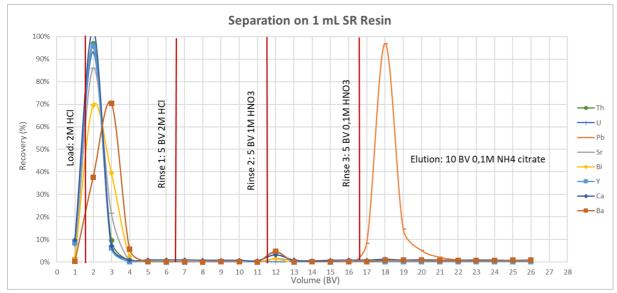

▶ Pb, Tl, Sn, Sb, Ga show hight D_W in HCl


Fig. 3: Distribution coefficients of Sr on TK102 Resin in 3 M HNO₃ in the presence of different salts

- ► D_w Sr decreases with KNO₃ starting at 0,05 M,
- ► no effect of NaNO₃ and 6 Ca(NO₃)₂ up to 1 M.

TK102 Resin – Sr separation



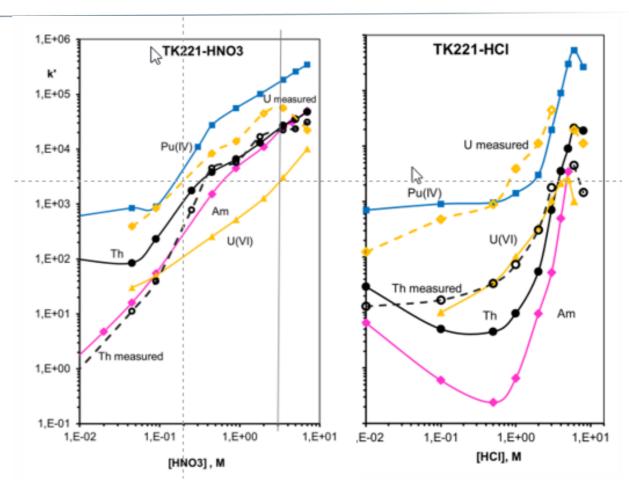

Sr elution study in 8M HNO₃ load medium

Resins TK102 and SR similar for the separation of elements Th/U/Pb/Sr/Ca/Bi/Y/Ca/Ba

TK102 Resin – Pb separation

Pb elution study with 2M HCl loading medium

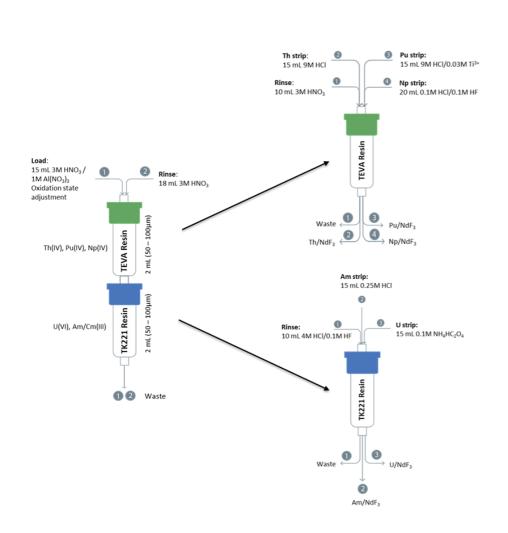
Resins TK102 and SR similar for the separation of elements Th/U/Pb/Sr/Ca/Bi/Y/Ca/Ba


TK221 Resin

(Papp, I., Vajda, N. & Happel, S.. *J Radioanal Nucl Chem* **331**, 3835–3846 (2022). https://doi.org/10.1007/s10967-022-08389-9)

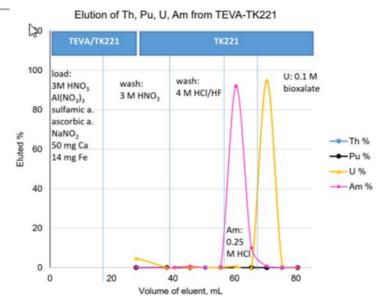
Resin based on a mixture of diglycolamide and phosphine oxide + traces long chained alcohol on inert support

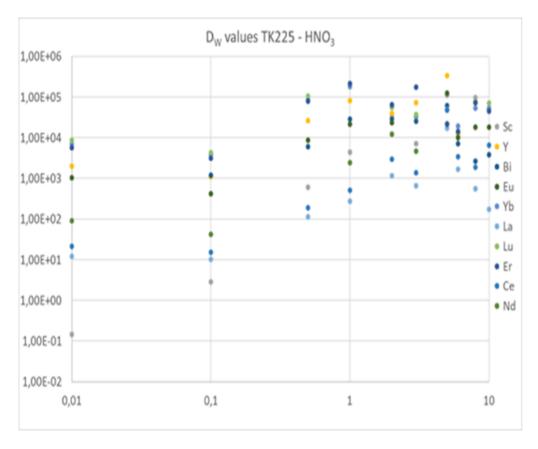
Main applications in radpharm

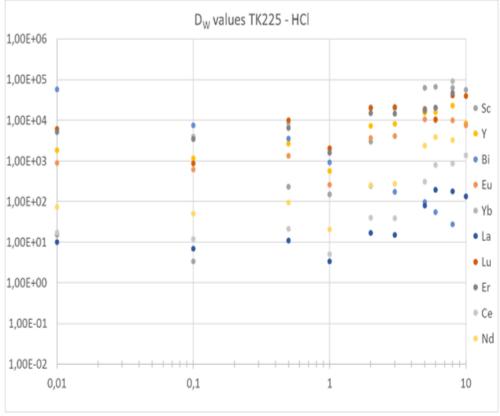

Applications for the separation of actinides

TK221 Resin

(Papp, I., Vajda, N. & Happel, S.. *J Radioanal Nucl Chem* **331**, 3835–3846 (2022). https://doi.org/10.1007/s10967-022-08389-9)




Table 3 Recovery of actinide tracers from spiked water samples

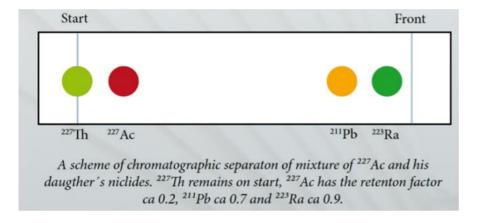

	Actinides determiantion	
	Without Np separation Yield %	With Np separation Yield %
TAP water		
²³⁰ Th	90±8	86 ± 7
²³⁹ Pu	108 ± 7	95 ± 7
²³⁷ Np	_	91 ± 9
²⁴¹ Am	103±7	97 ± 6
²³³ U	103 ± 7	70 ± 7
SEA water		
²³⁰ Th	71 ±7	61±6
²³⁹ Pu	91±7	87 ± 6
²³⁷ Np	_	93 ± 8
²⁴¹ Am	89±7	92 ± 6
²³³ U	88±7	59±6

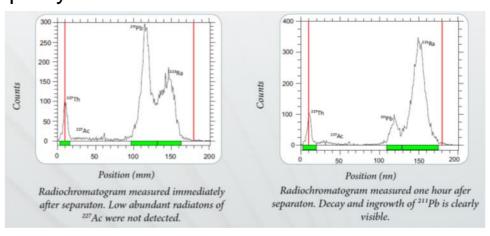
TK225 Resin

- TO-DGA plus ionic liquid
- Very high retention of lanthanides at medium to high acid
- Especially heavy lanthanides also very well retained at low acid concentrations
- Main application: Removal of radiolanthanides from effluents

Impregnated TLC – DGA Sheets

TO-DGA (normal DGA) and TEH-DGA (branched DGA) impregnated TLC paper


Developed at CVUT (Kozempel et al.)


QC of radionuclides and generator eluents

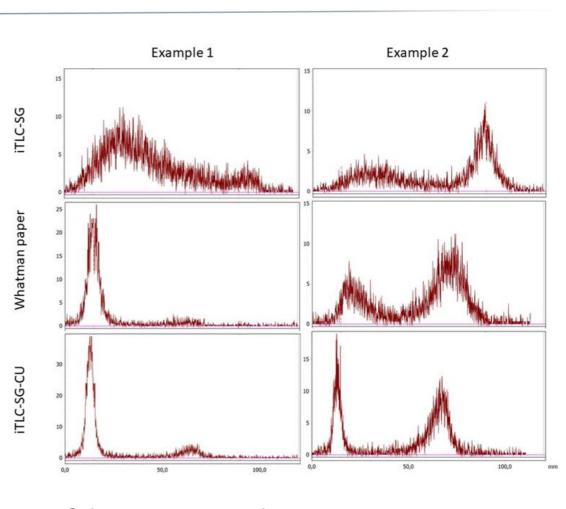
(p.ex. Ra-223, Ac-225/Bi-213, Pb-212, Ge-68/Ga-68 ...)

TLC scanner or radiometer/LSC or HPGe after cutting
 Run under acidic conditions => radionuclidic purity

More types of sheets under development (selectivities, geometry, support)

• 2D TLC for radionuclide screening?

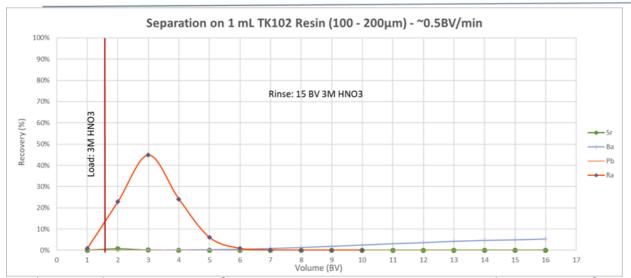
Impregnated TLC – CU Sheets


Poster presented at Terachem 2022 (Svedjehed et al.)

QC of Cu radiolabeled peptides (labeled vs free Cu)

- Shown: [61Cu]Cu-NOTA-octreotide Spotting/run on three different papers after labeling:
 - Whatman and iTLC without modification and
 - CU extractant impregnated iTLC paper.

Both iTLC paper (impregnated/non-impregnated) developed in less than 10min, Whatman took 25 – 30 min.


CU extractant impregnated iTLC paper showed superior resolution

Other systems under development/testing (TK101, ZR,...)

Under development Ra purification/recycling

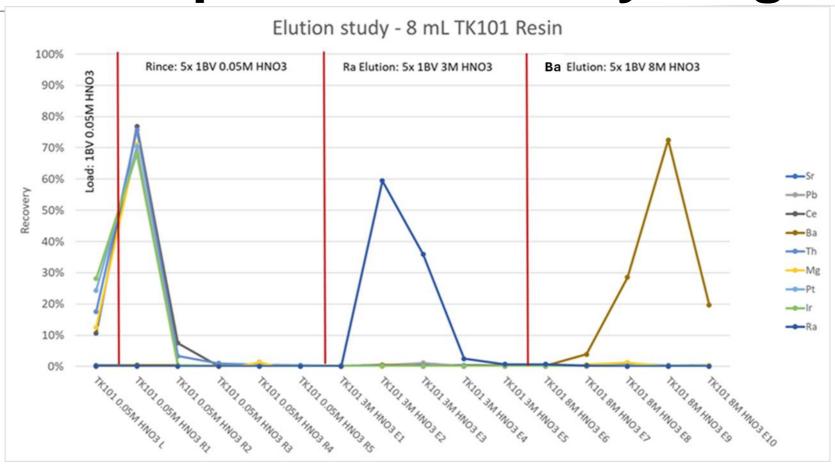
Elution study - Ra separation from Ba on TK102 Resin in 3M $\rm HNO_3$ - Ra data courtesy of

Work on crown-ether based resin for Ra ongoing

Aim: Ra retention from acidic/high NO₃-matrices, high capacity

Ra initial purification and recycling after irradiation specific methods depending on impurities present

- => Ideal case: only remove impurities, leave Ra in solution
- TK221 (or DGA) => other alpha emitters et al.
- TK102 for Ba, Pb and Sr removal from 3M HNO₃ (Low organics bleeding (hydrophobic solvent)



Under development Ra purification/recycling

- In case Ra needs to be purified on-column (e.g. dissolved Ra needles) =>
 Use of TK101 for Ra retention / purification
 - Test against Chelex, CEX, TK100
- TK101 => similar to TK100 but ionic liquid replaces HDEHP
 - Both based on same crownether as SR Resin
 - TK100 developed for Sr and Pb uptake also between pH ~2 and 7 (DGT)
 - \Rightarrow Wagner et al. TK100 discs
 - ⇒ Retains wide range of elements
 - Replacing HDEHP by ionic liquid (=> TK101 Resin) allows for retention of Pb, Sr, Ba,
 Ra,... from pH ~2 7 without extensive extraction of other elements

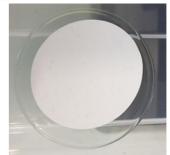
Under development Ra purification/recycling

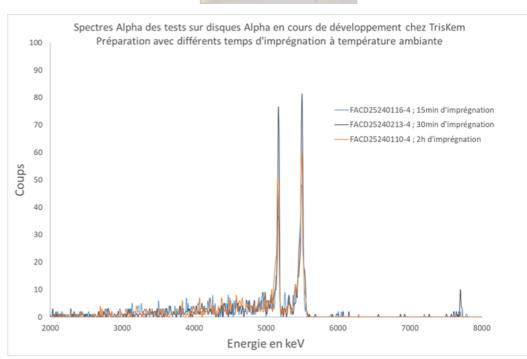
- Good Ra separation when loading from dilute HNO₃/HCl
- When eluting Ra in 3M HNO₃, Ba, Pb,
 Sr remain retained
- No retention of U, Th, Pt, Ir,...
- Ra eluted in 3M HNO $_3$
- Tl and Ba eluted in 8M HNO₃

Under development Membranes /Gross alpha discs

On-going work: development of impregnated membrane filters

First filters under beta testing:


- TK100 (DGT of Sr, Pb, Zn, LN in soil samples)
- TK201 (determination of Tc-99 in aqueous samples)
- 25mm and 47mm


Currently under testing, membrane filter for gross alpha measurement

pH 2, 10mL/min, typically 100mL samples

High retention of actinides

Peak resolution/spectrum still to be improved

Alpha sprectrum, Am-241 & Pu-239, ~50mBq each

Under development Cs Resins

Calixarene based => presentation by Illarion Dovhyi after morning break

Production of « industrial » extraction chromatographic resins

Requests from hydrometallurgy area

 Possible applications in decontamination and valorisation of effuents or decontaminent (e.g. acid)

Different resins

Bigger particle size support and higher amount of resins requested

- ~400 600µm
- Challenge: supply of extractant and inert support
 - Extractants: sufficient quality, low costs, high quantities

Increase of production capacity for these resins

Other on-going Projects

- ➤ Impregnated membrane filters
 - > Replacement of Nucfilm U discs
 - > Passive sampling
- >Impregnated PSm resins
- Range of 'Test sticks'
 - Suitable impregnated support
 - JCU => rapide isotope ratio analysis by MS (metallomics)
 - Uni Southampton/NPL
 - Ideally multiple layers of resins for multi RN screening
 - LSC measurement
 - Scintillating supports for non-LSC options
 - Decommissioning/screening

- Separation of DTM
 - SE Resin
 - Zr-93, Fe, Mo, Nb,...
- Fate' of RN in the environment
 - Separation methods
 - Mainly longer lived RN (=> therapy)
 - Ac-225/7, Lu-177(m), radioiodine,...
 - Quantification
- In-field preconcentration
 - Impregnated membranes
 - Cartridges

Microfluidics

Other 'geometries' &

'Non-resin' separation materials 20

Thank you for your attention!

