

Expertise in Separation Chemistry

Decommissioning phase

Which type of waste?

https://www.sckcen.be/nl/deco

Stefan Nijst, 2014, Master Thesis

Background

Methods and results

Radiological waste characterization

Based on (Warwick et al., 2022)

Background

Methods and results

Radiological waste characterization

Background

Methods and results

DTM radionuclides quantification

ISO standard 24390:2023

"a radionuclide whose radioactivity is difficult to measure directly from the outside of the waste packages by non-destructive assay means"

Lack of analytical methods suitable to determine DTM radionuclides

Interferences influencing the quantification of the activity

Lack of analytical methods suitable to determine DTM radionuclides

- Interferences influencing the quantification of the activity
- Low detection limit (DL) required

```
Clearance level <sup>36</sup>Cl
– 1 Bq g<sup>-1</sup>
```

DL > clearance level

Variety of matrices

https://www.sckcen.be/ nl/deco

Stefan Nijst, 2014, Master Thesis

Sample preparation and homogenization

Background

Methods and results

Selection of the target DTM radionuclides $\sqrt{2}$

Background

Methods and results

Conclusions 8

TRISKEM

Properties of the target DTM radionuclides

Properties of the target DTM radionuclides

Background

Methods and results

From CC BY

Background

Methods and results

Conclusions

11

2nd bubbler with 6 mM Na₂CO₃ (collection of ³⁶Cl not retained by the microspheres)

Gas adsorption in PS materials

Based on Mitev, 2016

Few chlorine released as Cl₂ HCl collected in trapping solution

Chlorine retention in TK-TcScint resin

Longer interaction time needed

No chlorine in ionic (solution) form retained

Methods and results

Application in activated graphite

Background

Methods and results

18

³⁶Cl memory effect

19

³⁶Cl memory effect

³⁶Cl memory effect

From CC BY

Background

Methods and results

Background

Methods and results

Complete separation of ¹⁴⁷Pm and ¹⁵¹Sm from each other

Interference removal (similar lanthanides)

Carrier for ¹⁴⁷Pm chemical recovery quantification (no stable Pm)

Background

Methods and results

Conclusions²⁴

Background

Methods and results

0.1 M HCI

²⁴¹Am ¹⁵¹Sm ¹⁴⁷Pm 0 20 0 40 60 Total volume (mL)

Background

Methods and results

Conclusions ³²

Background

Methods and results

From CC BY

Background

Methods and results

Conclusions ³⁶

Background

Methods and results

Conclusions ³⁷

Taken from Dirks et al. 2016

Background

Methods and results

SE Resin new prototype

Vacuum box needed

SE Resin new prototype:

- o 1-2 mL SE Resin
- o 1-2 mL Prefilter Resin

Background

Methods and results

Methods and results

Background

Methods and results

Background

Mixed waste Turnaround time

Detection limit below clearance level

53

Conclusions

17

Cleaning and new glassware materials

Choice of resins for ³⁶Cl determination

Methods and results

Conclusions

43

Conclusions

Complete radiochemical separation using **2** different **resins** (longer columns)

Nd used to quantify chemical recovery of ¹⁴⁷Pm

Eu does not strongly interfere in Sm fraction

Conclusions

Only Se(IV) suitable for retention on SE Resin

Elution on SE Resin suitable when Se(VI) is the oxidation state

Currently

Loading medium \rightarrow Se(IV) in solution Elution medium \rightarrow removal of Se as Se(VI)

Compatible for LSC

Additional information

- I. Llopart Babot, et al. On the determination of ³⁶Cl and ¹²⁹I in solid materials from nuclear decommissioning activities. *J. Radioanal. Nucl. Chem.* 331 (2022) 3313–3326. <u>https://doi.org/10.1007/s10967-022-08327-92</u>.
- I. Llopart Babot, et al. Investigating the ³⁶Cl memory effect in pyrolysis of solid samples from nuclear decommissioning activities, *J. Radioanal. Nucl.* Chem. 331 (2022) 4239–4249. <u>https://doi.org/10.1007/s10967-022-08492-x3</u>.
- III. I. Llopart Babot, et al. Investigation of a new approach for ³⁶Cl determination in solid samples using plastic scintillators, *Appl. Radiat. Isot.* 193 (2023). <u>https://doi.org/10.1016/j.apradiso.2022.1106464</u>.
- IV. I. Llopart Babot, et al. A comparison of different approaches for the analysis of ³⁶Cl in graphite samples, *Appl. Radiat. Isot.* 202 (2023).

https://doi.org/https://doi.org/10.1016/j.apradiso.2023.111046

Thank you for your attention!

in